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Abstract. We present here the results of an analytical study of certain thermodynamic 
properties of an ideal relativistic Bose gas confined to the curved space §- ' xRd- ' ,  with 
3 Q d s 4. As d approaches the marginal dimensionality 4, the amplitudes pertaining to 
these properties display a singularity similar to that displayed by the correlation length 6, 
of a spherical model of ferromagnetism in the flat-space geometry L"-d'  x sd', with 2 < d S 4 
and d ' c  2. These results are in sharp contrast with Cardy's generalization of 6, for a system 
in the space Sd- l  x RI, with 2 < d < 4. 

1. Introduction 

A few years ago Cardy (1985) gave a generalization of a well known result of conformal 
invariance, which is normally valid in two dimensions, to dimensionality greater than 
two. This result stems from the study of an infinitely long strip of width L subject to 
periodic boundary conditions and provides a direct connection between the critical- 
point correlation length & and the system size L, namely 

& = L/2TX (1) 
where x is the scaling dimension of the corresponding scaling operator; for d = 2, 
x = 47. The generalization in question was carried out by effecting a conformal transfor- 
mation of the metric of an infinite d-dimensional flat space Rd onto the metric of the 
space Sd-' x R' which consists of an infinite one-dimensional flat space, R', associated 
with a ( d  - 1)-dimensional curved space, S d - ' ,  of uniform radius R. Cardy inferred 
that relation ( 1 )  continued to hold for this case as well, with L=2.rrR and 

x = f (d  - 2 +  7) 2 < d < 4 .  (2) 
An explicit calculation for the spherical model of ferromagnetism (7 = 0) embedded 
in the space S2 x R' seemed to verify this result for the special case d = 3. We wonder 
if this would be true for arbitrary values of d-especially those close to 4. 

In this connection we recall the corresponding results for a spherical model in the 
flat-space geometry L d - d ' ~  cod' (2 < d c 4, d ' <  2), namely 

(see BrCzin 1982, Luck 1985, Singh and Pathria l986,1987a), which show a very specific 
behaviour as the total dimensionality d of the system approaches the critical value 4; 
this behaviour is characterized by a singularity at d = 4  which, for a finite system, 
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translates into an additional dependence on L through a logarithmic factor. One might 
argue that, for large L on one hand and large R on the other, the qualitative features 
of 5, would be the same-irrespective of the curvature of the space involved; the 
numerical factors, of course, will be different in the two situations. As it stands, relation 
( l ) ,  with x given by (2), does not possess the kind of feature displayed in expression 
( 3 a ) .  

To examine this question further one would like to investigate the problem of a 
spherical-model system in curved geometries by carrying out the summations-over- 
states appearing in the various quantities pertaining to the system more accurately 
than is ordinarily done. In most cases, however, the eigenvalue spectrum of the problem 
and the associated multiplicities of the states make such an analysis formidable; this 
is indeed true of the geometry, Sd- ’  x RI, considered by Cardy. We, therefore, decided 
to consider an alternative space, S3xRd’  ( d ’ s  l ) ,  analysis for which can be carried 
out exactly. Even so, there are problems ‘approximating the continuum of the curved 
space by a sequence of regular lattices’: we avoid these by switching over to an ideal 
Bose gas, instead of the spherical model, for which no lattice structure is required. In 
view of the fact that these two systems belong to the same universality class, the results 
obtained for the Bose gas are expected to elucidate the problem of the spherical model 
as well. The final difficulty here lies in coining a proper definition of the correlation 
length [-one that holds at all temperatures T, especially at T = T,. Our previous 
experience has shown (see, for instance, Singh et a1 1986) that whenever the lowest 
eigenvalue of the spectrum is positive definite the limiting value of the parameter p2 
(in Cardy’s notation), as T + 0, turns out to be negative; this not only creates problems 
of analytic continuation of various functions through the point where p2=0 (which 
occurs at a Jinite temperature To = T,) but also complicates the relationship between 
6 and p ;  see also Henkel (1988). This difficulty does not arise in Cardy’s geometry 
but it does in ours. We, therefore, decided to examine quantities such as the (singular 
part of the) specific heat at constant volume, cr ’ ,  and the isothermal compressiblility, 
K ~ ,  of the system-rather than its correlation length. Of course, the concern relating 
to the limit d + 4- is shared by all physical quantities that are singular in the bulk 
system at T = T,. 

In section 2 we set up analytical expressions for the particle density p and the 
energy density U of an ideal relativistic Bose gas, taking into account the possibility 
of particle-antiparticle pair production in the system; the desired quantities cF’( R )  
and K ~ ( R )  are then readily evaluated. In section 3 we examine these quantities in 
different regimes of T, especially at T =  T,, where we study their behaviour as a 
function of the total dimensionality d-in particular, for d d 4 and d = 4. Remarkably 
enough, we encounter features similar to those displayed by the Bat-space expressions 
( 3 a )  and ( 3 b ) ;  we suspect that the same would be true of the correlation length &( R )  
as well. In view of the fact that, in the systems under consideration, mean-field behaviour 
takes over as soon as d exceeds 4, one would expect the singularity (in the finite-size 
amplitudes) at d = 4 to be present, irrespective of the geometrical nature of the space 
available. If so, the generalization (2), though meant for a somewhat different geometry, 
may not hold for all values of d between 2 and 4. 

2. Thermodynamics of an ideal relativistic Bose gas in geometry §3 x Rd’  

We consider an ideal Bose gas composed of N, particles and N2 antiparticles, each 
of mass m, confined to the space S 3  x Rd’, with d ’ c  1. Since particles and antiparticles 
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are supposed to be created in pairs, the system is governed by the conservation of the 
number Q (= N1 - N 2 ) ,  rather than of NI and N2 separately; the conserved quantity 
Q may be looked upon as a kind of generalized ‘charge’. In equilibrium the chemical 
potentials of the two species will be equal and opposite: pl = -p2  = p, say, with the 
result that (Haber and Weldon 1981, 1982) 

N1 =C {exp[p(E -CL)]- 1I-l N ~ = C { ~ ~ P [ P ( E + C L ) ) I - ~ } - ~  (4) 
E E 

where E = ( m 2 +  k2)II2; for economy we employ units such that h = c = kB = 1. Note 
that both E and p include the rest energy m of the particle (or the antiparticle) and, 
for the mean occupation numbers in the various states to be positive definite, we must 
have Ip/ 6 emin.  Assuming that, to begin with, /L > 0, it readily follows that N ,  > N2 
and hence Q > 0. In view of the conservation of Q, p then stays positive under all 
circumstances. Without loss of generality, we shall assume that this indeed is the case. 

The eigenvalues, k,, of the wavenumber k for a free particle confined to the space 
S 3 ,  which is well known as the Einstein universe, are given by (see, for example, 
Schrodinger 1938) 

k, = n /  R n = 1,2,3, . . . ( 5 )  

with multiplicity g, = n 2 .  The particle energy E in the space S 3  x Rd’ may, therefore, 
be written as 

E = ( m2 + ki  + n2/ R2)Ir2 ( 6 )  
where kil  is the wavevector associated with the flat space Rd’ ,  which may, henceforth, 
be treated as a continuous variable. The ‘charge density’ p is then given by 

where V ( = 2 n 2 R 3 L i ’ )  is the volume of the given space, with R finite and Lll going to 
infinity. Following the procedure laid down in our previous work on Bose-Einstein 
condensation in an Einstein universe (Singh and Pathria 1984, 1987b), we obtain after 
considerable algebra 

where pe@, p )  is the corresponding bulk result: 

K , ( z )  being the modified Bessel functions, while the remaining terms represent finite- 
size effects in the system; here, 

Yt( v 

so that 

Yt( v 
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while y is the thermogeometric parameter of the problem which scales R with p :  

y =  n(m2-p2)1’2R.  (12) 

P B ( P c ,  m ,  = P. (13) 

The bulk critical temperature, Pc, is determined by the (obvious) condition 

In the region of phase transition ( p  = m ) ,  the bulk term in (8) takes the form 

if d <4,  whereas 

(146) 
if d =4 ;  the undetermined constant appearing in (14b) is of order unity. At the same 
time, the sums appearing in the finite-size terms of (8) can be simplified by using 
identities from Singh and Pathria (1989), whereby 

d - 4  x( - 11 ; y ) + 7 x( d-2 I1 ; y ) 
2 2 

d - 3  d - 2  1 
2 Y 

+ nl/2r(1) 5 - d  - 1 

- - - r (7) 5 ( d - 2) d-2 + $ ( y) 
yd-2 ( (nq)d-3- 

q = l  

if d <4,  whereas 

X(OI1; y ) + f W I 1 ;  Y )  

Y 2  n2q2 

if d = 4; here, y is the well known Euler constant. Substituting (14) and 
we obtain to the desired order in y / R  

m 
P = P B ( P ,  m ,  -2d-3n(3d-4)/2p~d-2 

+n1’2r(T) 5 - d  
q=1  ( ( n q ) d - 3 - ( = * q 2 + y 2 ) ( 5 - d ) / 2  

if d <4,  whereas 

m 
P=PB(P, m)-m 

x{$+y’[iln (a) +constant] 
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if d = 4 ;  here, A (=-) denotes the mean thermal wavelength of the particles 
in the system. For a given p, equations (16 )  determine y as a function of P and R. 

For the study of the specific heat, we evaluate the energy density U of the system, 
which is given by 

Analysing (17) in the same manner as (7), we obtain for the singular part of the specific 
heat per unit volume 

The derivative (ay lap ) ,  can be obtained from equations (16 ) ,  leading to the final result 

for d < 4, and 

for d = 4 .  

the help of the general relationship (see Singh and  Pathria 1987b, c) 

which does not depend on R ;  in view of this relationship, we may in the following 
concentrate on only one of these quantities, say c!’, and refer to the other only when 
it is deemed necessary. For determining the precise manner in which the quantities 
c;’ and KT vary with the parameters, /3 and R, of the problem, we have to eliminate 
y with the help of equations ( 1 6 ) .  

The isothermal compressibility of the sytem can be obtained straightforwardly with 

C f i K T = - P ( P - P B ( P ,  m ) - P  apB(P, m ) / a @ ) 2 / p ’  ( 2 0 )  

3. Thermodynamic behaviour in different regimes of temperature 

Regime (i). In the region offirst-order phase transition ( T  < Tc),  the chemical potential 
p of the system tends to the lowest eigenvalue of the particle energy E ,  i.e. p + = 
( m 2 + 1 / R 2 ) ” 2 =  m + 1 / ( 2 m R 2 ) ,  with the result that y 2 =  r 2 ( m 2 - p 2 )  R 2 +  -r2.  The 
slight but significant variation of y in this regime is given by (see equations (16 ) ,  
remembering that, for P > P c ,  p B ( P ,  m )  < p a ( P c ,  m )  = p )  



4624 S Singh and R K Pathria 

again for d s 4. As T -  0, p B ( P ,  m )  = ( m / 2 ~ p ) ~ ” [ ( d / 2 )  + 0 (see equation (9)), with 
the result that 

It seems worthwhile to point out here that the dependence of c!’ on R for all T < T, 
and on T as T + 0 are consistent with the flat-space results reported earlier (see Singh 
and Pathria 1 9 8 7 ~ ) .  

Regime (ii). For T 3  T, and R +CO, we recover standard bulk results, with finite-size 
corrections that are exponentially small. For the record, we note that in this regime 

(24) 

with the result that 

d < 4  1 - 1 ( 4 - d l l i d - 2 )  

R4-dYd-4 

1 
d = 4 .  -- 1 I l n (R /h , ) - Iny  l n ( l / t )  

1 ck”1- 

Regime (iii). Between regimes (i) and (ii) lies the ‘core’ region where both y 2  and 
( y 2 +  T’) are of order unity. In this region we identify two special points-T = To where 
y = 0 and T = T, where y = yc. Equations (16) tell us that To > T, and that (To  - T,) - 
1/RdW2. Since y 2  is a monotonically increasing function of T, it follows that yf is 
negative; its precise value is given by the implicit equation 

for d < 4 ,  and by 

for d = 4. For d = 3, we obtain the exact result: yf = - ~ * / 4 ;  for other values of d, yf 
has to be determined numerically. For d s 4, we find that 

while for d = 4  

T 2  

6[ln( R/&) + constant] ’ 
y f =  - 

It follows that 

~ = ( 4 - d ) < <  1 (280) 
d =4.  (28b) 

In view of (20), the corresponding expressions for the isothermal compressibility turn 
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out to be 

m2 R e / &  ~ = ( 4 - d ) < <  1 ( 2 9 ~ 1 )  
(29b)  KT1 T =  7‘ = ~ 27r2p,p2 {In( RIA, )  +constant d = 4 .  

4. Discussion of results 

First of all we observe that the specific heat c!’ (and, by implication, the isothermal 
compressiblity K ~ )  of the system under study possess an R dependence such that 

( i )  for T < T,, it is strictly algebraic-with exponent 2 ( d  - d ’ ) / ( 2 -  d ’ )  (=6/ (5  - d ) ,  
for d = 3 + d ’ ) ,  which is formally the same for all d s 4, while 

(ii) for T = T,, it is algebraic for d <&with exponent (4 - d )  and an amplitude 
that tends to vanish (or diverge) as d -+ 4- ,  paving the way for the R dependence to 
become logarithmic at d = 4 ;  for T 3  T,, we encounter a similar dependence on f. 
Secondly, and more importantly, we observe that, for d S 4  and for d = 4 ,  the R 
dependence of the quantities C ; ’ I ~ = ~ ,  and ~ ~ 1 ~ = ~ ,  in the space S 3  x R d ’  is very much 
similar to the L dependence of the quantity tC in the flat-space geometry L d - d ’ ~  ad’; 
compare equations ( 2 8 )  and ( 2 9 )  with (3). It is conceivable that 6, in the space S3 x Rd’  
(or, for that matter, in any space, including S d - ’ x R ’ )  would also possess similar 
features as d + 4- .  

Ideally we ourselves should have evaluated & in the space S 3  x Rd’ .  We could not 
do so because we do not have at our disposal a relationship between ( and y that 
holds at all temperatures T. While for Tb T,, where y >> 1, 6 is known to be - R / y  - 

and for T < T,,  where y 2  2 -r2,  6 is presumably - R / ( y 2  + T ~ ) ’ , ‘ ~  - R 3 / ‘ 5 - d ) ,  
we have no clear idea how 6 varies with y in the ‘core’ region where y 2  passes from 
positive to negative values. This difficulty arises in all cases where the lowest eigenvalue 
of the energy spectrum is such that m, with the result that, as the temperature 
of the system is lowered, the chemical potential p eventually approaches this limiting 
value and in the process makes y 2  negative; see Singh et al (1986)  and Henkel (1988) .  
In any case, whatever the relationship between 6 and y ,  the quantity &, for d + 4- ,  
should in our opinion possess the kind of feature emphasized here. 

t - l / ( d - 2 )  
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